Optical trapping and sensing with plasmonic dipole antennas
نویسندگان
چکیده
In this work, we study how to use a plasmonic dipole antenna as a multifunctional nanodevice for surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) –based sensing and optical trapping. An analytical model is implemented to link the local electric field enhancement with the gradient forces, as well as the resonance shift caused by the presence of the analyte which can be a molecule or a nanoparticle. We find that a higher local field enhancement induces stronger trapping forces and a larger resonance wavelength shift. Experiments were also performed using plasmonic dipole antennas. Strong SERS signals were observed from the nanogap of an antenna, trapping of Au nanoparticles as small as 10 nm was achieved with a moderate laser power, and evident resonance shifts of the antenna associated with the trapping events were also observed. These results are consistent with our theoretical result that the giant field enhancement generated by a plasmonic dipole antenna also generates strong gradient forces and a high spectral sensitivity.
منابع مشابه
Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
The optical trapping of Au nanoparticles with dimensions as small as 10 nm in the gap of plasmonic dipole antennas is demonstrated. Single nanoparticle trapping events are recorded in real time by monitoring the Rayleigh scattering spectra of individual plasmonic antennas. Numerical simulations are also performed to interpret the experimental results, indicating the possibility to trap nanopart...
متن کاملSilicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications
We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguid...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملPlasmon optical trapping using silicon nitride trench waveguides
We theoretically demonstrate optical trapping using a silicon nitride (Si3N4) trench waveguide on which bow-tie plasmonic nanoantennas are employed for enhancing optical forces. The electric field tailing away from the waveguide is transformed and then enhanced by the plasmonic nanoantennas deposited on the waveguide surface. We show that, with gold bow-tie nanoantennas, the waveguide system ex...
متن کاملRadiative Enhancement of Plasmonic Nanopatch Antennas
Efficient light manipulation at subwavelength scale is of great interest for solar energy conversion, optical sensing, and nanophotonic devices. Recently, plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticles and metal films with thin layers of dielectric spacers sandwiched between them, have shown promise for directing and enhancing radiation from the dipole emitters at...
متن کامل